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Abstract The goal of this article is to compare some opti-
mized implementations on current High Performance Plat-
forms in order to highlight architectural trends in the field
of embedded architectures and to get an estimation of what
should be the components of a next generation vision sys-
tem. We present some implementations of robust motion de-
tection algorithms on three architectures: a general purpose
RISC processor - the PowerPC G4 - a parallel artificial retina
dedicated to low level image processing - Pvlsar34 - and the
Associative Mesh, a specialized architecture based on asso-
ciative net. To handle the different aspects and constraints of
embedded systems, execution time and power consumption
of these architectures are compared.
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Introduction

For more than thirty years, Moore’s law had ruled the perfor-
mance and the development of computers: speed and clock
frequency were the races to win. This trend slowly drifted
as the processing power of computers reached a seemingly
stable value. Other constraints (static current consumption,
leakage, less MIPS per gates and less MIPS per Watts) of
current technology - 90 nm and 65 nm - gave researchers
an impulse to look for innovative directions to improve effi-
ciency and performance of their architectures. Current chal-
lenge is to tackle power consumption to increase systems
autonomy. Such technology, like IP core within embedded
systems, make the processor frequency adaptable and lead
to a finely optimized energy consumption. As image pro-
cessing and computer vision are very CPU demanding, we
focus on the impact of the architecture for a frequently used
class of algorithms: the motion detection algorithms.

Three architectural paradigms are compared:

– SWAR: SIMD Within A Register: the impact of the SIMD
multimedia extension inside RISC processors, to enhance
performance;

– programmable artificial retina: one elementary processor
per pixel for cellular massively parallel computation and
low power consumption;

– associative net: impact of reconfigurable graph/net be-
tween processors for local and global computations and
also the impact of asynchronous processors on power
consumption.

We focus on the advantages and limitations of these ar-
chitectures through a set of benchmarks. We also show how
to modify the algorithms to take advantage each architec-
ture’s specificities. We provide different performance indexes
like speed, energy required and a “down-clocking” frequency
to enforce real-time execution. Such indexes provide insight
on future trends in computer architecture for embedded sys-
tems.
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The paper is organized as follow. The first section in-
troduces a set of motion detection algorithms: Frame Dif-
ference, Markovian relaxation, Sigma-Delta algorithm and
post-processing morphological operators. The second sec-
tion presents the three architectures: the PowerPC G4, Pvl-
sar34 (a 200× 200 Programmable Artificial Retina) and the
Associative Mesh (an asynchronous net with SIMD func-
tional units). This section also provides details about how
algorithms are optimized in regard to the targeted architec-
tures. The third section deals with benchmarking: bench-
mark of the different algorithms in term of speed and in term
of power consumption. To conclude, a synthesis of two ex-
tensive benchmarks is provided.

1 Motion detection algorithms

As the number of places observed by cameras is constantly
increasing, a natural trend is to eliminate the human interac-
tion within the video monitoring systems and to design fully
automatic video surveillance devices. Although the relative
importance of the low level image processing may vary from
one system to the other, the computational weight of the
low level operators is generally high, because they involve a
great amount of data. Thus, the ability of video surveillance
systems to detect a relevant event (intrusion, riot, distress...)
is strongly related to the performance of some crucial image
processing functions.

Such fundamental processing step is the motion detec-
tion, whose purpose is to partition the pixels of every frame
of the image sequence into two classes: the background, cor-
responding to pixels belonging to the static scene (label: 0)
and the foreground, corresponding to pixels belonging to a
moving object (label: 1). A motion detection algorithm must
discriminate the moving objects from the background as ac-
curately as possible, without being too sensitive to the sizes
and velocities of the objects, or to the changing conditions of
the static scene. For long autonomy and discretion purposes,
the system must not consume too much computational re-
sources (energy and circuit area). The motion detection is
usually the most computationally demanding function of a
video surveillance system. How the algorithm is actually
computed and on which architecture, then become crucial
questions.

Three algorithm/architecture pairs will be considered here.
In order to compare those very different architectures, we
will consider different versions of motion detection algo-
rithms with similar quality but relying on different compu-
tational models, some of them being more adapted to one
architecture than the other.

The motion detection algorithm can be separated into
two parts: (1) time-differentiation and (2) spatiotemporal reg-
ularization.

The purpose of the time-differentiation part is to pro-
vide, for every pixel x and every time index t: a measure
of the temporal variation (the observation), denoted Ot and
an initial value of the motion binary label, denoted Êt. The

“frame difference” option is classical and fairly obvious: the
temporal derivative is approximated by a difference between
consecutive frames, whose absolute value is used as a single
motion map (observation) Ot(x) = |It(x)−It−1(x)| and the
initial value of the motion label Êt is obtained by threshold-
ing Ot. The “SigmaDelta” option – detailed in Section 1.1 –
is a recent algorithm (31), based on non-linear estimation of
temporal statistics of every pixel.

The spatiotemporal regularization part aims at exploiting
the correlations between neighboring pixels in the motion
measures in order to improve the localization of the moving
objects. Two main options are considered here: (a) Morpho-
logical filtering, detailed in Section 1.2 and (b) Markovian
relaxation, detailed in Section 1.3.

So, the “Sigma-Delta” can be seen as a pre-processing
step for the Markovian regularization or as the main algo-
rithm when followed by a morphological post-processing.

1.1 Sigma-Delta Estimation

The principle of the Σ∆ algorithm is to estimate two pa-
rameters Mt and Vt of the temporal signal It within every
pixel using Σ∆ modulations. It is composed of four steps:
(1) update the current background image Mt with a Σ∆ fil-
ter, (2) compute the frame difference between Mt and It,
(3) update the time-variance image Vt from the difference Ot

using a Σ∆ filter and (4) estimate the initial motion label Êt

by comparing the current difference Ot and time-variance
Vt.

for each pixel x:
if Mt(x) < It(x), Mt(x) = Mt−1(x) + 1
if Mt(x) > It(x), Mt(x) = Mt−1(x)− 1
otherwise Mt(x) = Mt−1(x)

step1: update Mt

for each pixel x:
Ot(x) = |Mt(x)− It(x)|

step2: compute Ot

for each pixel x such that Ot(x) 6= 0:
if Vt(x) < N ×Ot(x), Vt(x) = Vt−1(x) + 1
if Vt(x) > N ×Ot(x), Vt(x) = Vt−1(x)− 1
otherwise Vt(x) = Vt−1(x)

step3: update Vt

for each pixel x:
if Ot(x) < Vt(x)

then Êt = 0

else Êt = 1

step4: estimate Êt

Apparently, the only parameter is the amplification fac-
tor N of the difference (typical values of N are in 2 . . . 4).
The dimension of N is the number of standard deviation
used in the initialization of the motion label. In fact, the
updating frequency, which has the dimension of number of
gray level per second, can also be adapted. This is a way of
customizing the Σ∆ estimation to different kinds of motion
and image noise (32).
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εB(I)(x) =
^
b∈B

I(x− b) γB = δB ◦ εB

δB(I)(x) =
_
b∈B

I(x + b) ϕB = εB ◦ δB

(a) (b)
ξB = ϕB ◦ γB Ξn = ξBn ◦ Ξn−1

θB = γB ◦ ϕB Θn = θBn ◦Θn−1

(c) (d)

Table 1 Morphological operators: (a) Erosion and dilatation (b) Open-
ing and closing (c) Alternate filters (d) Alternate Sequential filters.

1.2 Morphological filtering

1.2.1 Alternate Sequential Filters (ASF)

The first option of morphological filtering is to perform a se-
quence of dilatations and erosions using a set of structuring
elements of increasing size, such as a sequence of discrete
balls (Bn)n, Bn = {z ∈ Z2; d(z,O) ≤ n}, with O the ori-
gin of the discrete plane Z2 and d a discrete distance of Z2.
Table 1 shows the definitions of such operators.

∧ and ∨ respectively represent the logical AND and OR.
By convention, Ξ0 and Θ0 both correspond to the identity
function. In this option, the spatiotemporal regularization is
performed by applying an alternated sequential filter of cer-
tain size to the output of the temporal detection. Typically,
Et = Ξ2(Êt).

1.2.2 Density operators

In a similar fashion, density operators are defined using a
structuring element B, except that the binary response is
based on counting-thresholding instead of AND-OR combi-
nations :

DB(I)(x) = 1 ⇐⇒ |{b; I(x− b) = 1}| ≥ θ
where |S| represents the cardinality of set S and θ a

threshold representing a required density of 1s. In this case,
the final label is computed using a density operator with a
ball of radius n: Et = DBn

(Êt). Typically n equals 1, 2 or
3 and usually θ = d|Bn|/2e (majority voting).

1.2.3 Geodesic reconstruction

Defined from a binary reference image R, the geodesic re-
construction RecR(I) of Image I within Reference R is the
relaxation of the geodesic dilatation of I within R: δR

B(I) =
δB(I) ∧ R. Assuming that the structuring element B - ba-
sically a discrete ball of radius 1 - is defining the topol-
ogy, RecR(I) corresponds to the connected components of
R having a non-empty intersection with I .

In this option, the final label Et is computed as follows:
small connected components elimination using an opening
by reconstruction with a ball of radius n: Ẽt = RecÊt(γBn

(Êt)),
then temporal confirmation by computing another reconstruc-
tion: Et = RecẼt(Ẽt−1).

The final motion label Et then corresponds to the objects
(connected components) bigger than Bn that appear on two
consecutive frames.

1.3 Markovian Relaxation

Markov Random Field based algorithms (MRF) have as-
serted themselves in a lot of image processing areas for regu-
larizing ill-posed problems. Albeit robust, their well-known
drawback is their CPU consumption due to a large amount
of computations, which led researchers to look for solution
to speed up its execution time, using parallel machines or
dedicated architectures (1; 2; 9; 21; 30).

We follow the MRF model introduced for motion detec-
tion purposes proposed by the LIS-Grenoble laboratory (7)
and derived from the IRISA model (4; 28). This model is
based on the estimation of a binary (background/foreground)
motion field e given an observation field o, by maximizing
a Bayesian maximum a posteriori criterion, i.e. given a real-
ization of the observation field o = y, finding the realization
x of the motion label field e that maximizes the conditional
probability P (e = x/o = y). Assuming that e is a Markov
Random Field, linked to o with a probabilistic relation, this
corresponds to finding the motion field e that minimizes the
global energy function defined over the set of pixels S as
follows:

U =
∑
s∈S

[Um(e(s)) + Ua(e(s), o(s))],

with Um(e(s)) =
∑

r∈V(s)

Ve(e(s), e(r)),

and Ua(e(s), o(s)) = 1
2σ2 [o(s)− Ψ(e(s))]2.

Um(e(s)) is called model energy and is designed to pro-
vide spatiotemporal regularity in the motion field. It is based
on the Markovian modeling of e as a Gibbs field, where V is
the set of neighbors of the pixel s and the potential functions
Ve(e(s), e(r)):

V (es, er) =


−βsr if es = er

+βsr if es 6= er

The βsr are positive constants whose values depend on
the nature of the neighborhood. We use a uniform 10-connected
spatiotemporal topology (see Figure 1), with 3 different val-
ues βs = 20 for the 8 spatial neighbors, βp = 10 for the past
neighbor and βf = 30 for the future neighbor. Experimen-
tal tests demonstrate that these parameters do not have to be
tuned according to the image sequence.

Ua(e(s), o(s)) is called fitness energy and is designed to
ensure a certain level of attachment to the input data, i.e. the
observation o. This term comes from the conditional prob-
ability of the observation field o, with respect to the mo-
tion field e, assuming that o(s) = Ψ(e(s)) + n(0, σ2), with
n(0, σ2) a centered Gaussian noise of variance σ2, Ψ(e(s)) =
0 if e(s) has the background value and Ψ(e(s)) = α if e(s)
has the foreground value. The α parameter can be set to
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Fig. 1 spatiotemporal topology

usual value 20, or updated on the fly, as the average value
of the moving observations. σ2, the variance of the moving
observation, is computed for every frame.

The minimization of the global energy U is realized by
the deterministic relaxation called Iterated Conditional Mode
(ICM): all the pixels are sequentially updated and each pixel
s is given the label e(s) corresponding to the smallest local
energy Um(e(s))+Ua(e(s), o(s)). Usually, instead of a true
relaxation, a limited number of scans is performed (typically
4). The advantage is that the computation time becomes in-
dependent of the data, in particular of the initial value of the
motion field e.

But the drawback is that the quality of the final label-
ing is very dependent on that initial value, which must be
close enough to the final solution. In our algorithm, we use
the output of the Σ∆ temporal differentiation Êt, which as
proved a good choice of initial guess (31). The observation
field o corresponds to the difference map Ot.

2 Architectures and their optimizations

In order to perform a fair comparison of these architectures,
the algorithm must be optimized for each one. This section
describes how the different algorithms are implemented on
the three architectures, the impact of the architecture on the
algorithm and how the algorithms’ structure and the archi-
tectures themselves should be modified to obtain optimized
implementation.

2.1 PowerPC

The powerPC used is a PPC 7447 running at 1 GHz. It has a
32 KB L1 cache, a 512 KB L2 cache and its power con-
sumption is 10 Watt. Its specifications are detailed in ta-
bles 5 and 6. From a functional point of view (figure 2), it
has one Load/Store Unit, one ALU, one FPU and a super-
scalar SWAR unit: Altivec. Altivec is a multimedia instruc-
tion set extension which has been designed to efficiently ac-
celerate image and signal processing (15) applications. Al-
tivec is composed of four 128-bit SWAR units (following the
Freescale vocabulary):
– Vector Permute Unit, that handles the instructions to re-

arrange data within SWAR registers (permutation, selec-
tion),

– Vector Simple Integer Unit, that handles all the fast and
simple integer instructions,

– Vector Complex Integer Unit, that handles the slower
and complex instruction like multiply, multiply-add,

– Vector Floating Point Unit, that handles all the SWAR
floating-point instructions.

Main advantages of Altivec are:

– each of the four vector units are pipelined,
– two instructions from the four units can be issued per

cycle without constraint on which unit is used.

decode / dispatch

instruction fetch

Vector
Issue

Queue

General
Issue

Queue

FP
Issue

Queue

write-back

complete

FPU

FPU

FPU

FPU

FPU

FPU

IU2

IU2

IU2

IU1

ALU

LSU

LSU

LSU

Load/Store
Unit

VPU

VPU VCIUVSIU VFPU

VFPU

VFPU

VFPU

VCIU

VCIU

VCIU

Vector Unit - Altivec

Fig. 2 PowerPC G4 pipeline

To optimize a given code for a SWAR RISC processor,
we have to address the following points:

– bandwidth problem: by optimizing loads and data reuse,
avoiding data reload and optimizing cache locality (36),

– pipeline stalls due to un-predictable test instructions: by
trying to remove tests from MRF energy computation,

– pipeline throughput with loop transformations.

In this section we focus on SWAR optimization (also
known as SIMDization) and algorithm transformations. De-
tails about loop transformation techniques and above opti-
mizations are given in (14).

To speed up the computation of the model energy um, we
have to transform the equation of the potential function V ,
that comes from the Ising model (the spin associated with
a particle). Usually spin-up and spin-down are coded with
+1 / −1. In our case, rather than labeling the state of a site
−1,+1 for background or motion pixel, we use the binary
code 0, 1. Let p1, s1 and f1 the number of sites, connected
to es, with a value 1, in the past, present and future images
(p1 ∈ {0, 1}, s1 ∈ {0, . . . , 8}, f1 ∈ {0, 1}). Then the energy
model can be computed without any test or comparison:

um1 = (8−2s1)βs+(1−2p1)βp+(1−2f1)βf , um0 = −um1
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where um1 is the energy associated to a central site at 1.
The fitness energy can also be computed without taking into
account the state of the site:

ua0 =
1

2σ2
[o(s)]2 , ua1 =

1
2σ2

[o(s)− α]2

If um1 +ua1 < um0 +ua0, the state is set to 1 otherwise
it is set to 0. The change is performed whatever the previ-
ous state was. The same approach is used to remove tests
from the Σ∆ algorithm which is actually very hard to opti-
mize since only a few additions and comparisons are done
compared to the amount of memory accesses, as described
in (14). Note that this test can be optimized by rewriting
2um1 < ua0 − ua1:

um1 < δua, δua =
ua0 − ua1

2
=

α(2o− α)
4σ2

2.1.1 Density and opening

jj-1 j+1 j+2 j+3 j+4

i

jj-1 j+1 j+2 j+3 j+4

i

jj-1 j+1 j+2 j+3 j+4j-2 j-2 j-2

output pixel neigborhood new column

i-1

i+1

i+2

i-1

i+1

i-2

Fig. 3 operators with neighborhood: overlapping for 3× 3 and 5× 5
kernels

We have implemented three kernel size for these opera-
tors: 3×3, for regular use, 5×5 and 7×7 to estimate the ad-
equacy of the considered architectures to those well known
kernel operators. The cardinal computation of the ball of di-
ameter k, that is the summation of pixel value over the k×k
kernel (figure 3) requires k2 LOAD, 1 STORE and k2 − 1
mathematical operations (typically ADD but could be AND
or OR Boolean operator for erosion and dilatation). Taking
into account that k× k kernels overlap from one iteration to
another one, such summation can be optimized by splitting
this summation into k columns summation. The cardinal is
then the sum of these k columns. For the next iteration, only
one new column should be computed and added to the previ-
ous one. The new complexity is k LOAD, 1 STORE and only
2(k − 1) ADD (see table 2).

For SWAR computation, the same optimizations can be
applied except that 16 pixels are computed in parallel in-
stead of only one SWAR results are given in table 2 for 16
pixels). SWAR implementation requires the construction of
unaligned vector registers to compute the partial sums. This
is quickly done thanks to the dedicated Altivec instruction
vec sld (figure 4). For example, given three aligned vector

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1DFE

10 11 12 13 14 15 16 17 18 19 1A 1B 1CFED

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21

2213 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21

3x3 5x5 7x7

vX(i,j)

vX(i,j+1)

vX(i,j-1)

vector index scalar index

sX(i,j-16)

sX(i,j)

sX(i,j+16)

sX(i,j)

sX(i,j+1)

sX(i,j+2)

sX(i,j+3)

sX(i,j-1)

sX(i,j-2)

sX(i,j-3)

vec_sld

Fig. 4 SWAR convolution reuse

instruction without split with split

scalar LOAD k2 k
scalar STORE 1 1

scalar mathematical Op k2 − 1 2(k − 1)

SWAR LOAD 3k k
SWAR STORE 1 1

SWAR mathematical Op k2 − 1 2(k − 1)

Table 2 instructions per point, scalar & SWAR version

registers (figure 4) vX(i, j − 1), vX(i, j), vX(i, j + 1), the
k = 7 unaligned vector registers sX are constructed and
used to compute the sum of line i, (same computations are
performed for lines i − 3, i − 2, . . . , i + 3). The interesting
fact is that, up to a value of n = 16, pixels x(i, j − n) and
x(i, j + n) are in the left and right vector registers of x(i, j)
(figure 4). So, for kernels size up to k × k = 33 × 33, only
3× k SWAR LOAD are required.

2.2 Programmable Artificial Retina

The purpose of the Programmable Artificial Retina (PAR)
project is to develop versatile, real-time, compact and low-
power vision systems. In the vision machines today, most
of the resource consumption is due to the transfer of huge
amounts of data throughout the different parts of the system.
The data flow thus becomes the main source of cost in time,
circuit area and/or energy. In PAR based vision systems, the
data transfers are limited to the minimum, by processing the
information where it is acquired, i.e. within every pixel of
the sensor and by performing an information reduction in
the focal plane in order to extract only a few descriptors rep-
resenting a very small data flow, that can be processed by a
low-power external processor.

The PAR concept originates from the NCP (Neighbor-
hood Combinatorial Processing) retinas (42) which were SIMD
Boolean machines. The NSIP (Near Sensor Image Process-
ing) concept (20) then allowed to process gray level images.
Now, the deep sub-micron level of CMOS technology allows
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to put more and more powerful processing circuitry aside
the photo receptors while preserving good acquisition per-
formance and resolution (26) (40). The circuit used in our
work was designed by T. Bernard at ENSTA and fabricated
using 0.35 µm technology: Pvlsar34 is a 200 × 200 retina,
with an elementary digital processor and 48 bits of memory
within every pixel. The architecture of Pvlsar34 is presented
in Section 2.2.1, and the retinal algorithms in Section 2.2.2
Now, whereas this architecture has proved well adapted to
low and medium level image processing (35) (32), the inter-
est of asynchronism has been identified to enhance the pro-
cessing power of the PARs by providing them with a higher
(i.e. regional) level of computation (18) (23) (24). This is
discussed in Section 2.2.3.

2.2.1 Retina and cortex architecture

The detection algorithm presented in this paper was actually
implemented on the architecture presented in figure 5. The
PAR Pvlsar34 is a CMOS sensor and a parallel machine at
the same time. It is a grid of 200 × 200 pixels/processors
connected by a regular 4-neighbors rectangular mesh. The
processors execute synchronously, on their local data, a se-
quence of instructions sent by the controller, which is the
NIOS processor IP core of the Excalibur FPGA chip. The
host processor or cortex is the ARM processor hardware
core of the Excalibur. It can exchange data with the PAR,
modify the program sent by the NIOS to the PAR and is in
charge of the higher levels of computation (i.e. non-image
processing) of the vision task.

PE PE

PE PE

PE PE

PE PE

PE PE PE
N

PAR: Programmable Artificial Retina
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Fig. 5 Architecture of the system composed of the PAR and cortex,
with focus on one elementary processor

Every pixel/processor of the PAR is composed of:

– one photo-receptor,
– one Analog to Digital Converter,

– 48 bits of digital memory,
– one Boolean Unit (BU), which can read some bits of the

digital memory, compute a Boolean operation and write
its output on one bit of the digital memory.

The actual instruction set of Pvlsar34 is composed of
only five instructions. If reg1 and reg2 are two binary regis-
ters of the digital memory:

– one; The BU takes the logical value 1.
– rd(reg1); The BU takes the logical value of register reg1.
– ror(reg1,reg2); The BU takes the logical value of the bi-

nary OR between the two binary registers reg1 and reg2.
– wd(reg1); The BU writes down its logical value on reg-

ister reg1.
– wc(reg1); The BU writes down the complementary of its

logical value on register reg1.

Boolean algebra shows that this instruction set is suffi-
cient to compute any Boolean function. Now, for readability
purposes, we shall use in the presentation of the primitives
a generic Boolean instruction set, made of the instructions
of the form y = OP (x1, x2), where x1, x2, y are 3 bits (not
necessarily distinct) of the digital memory and OP is any bi-
nary Boolean function (e.g. AND, XOR, ADD NOT, etc). Note
that every instruction is computed in a massively parallel
SIMD mode, the operators are then performed simultane-
ously on all pixels.

Every pixel of the PAR shares 1 bit of its memory with
each one of its 4 closest neighbors, allowing spatial inter-
actions and image translations. Regarding data extraction,
there are two ways to output information from the PAR:

– by translating the image and reading the output on the
edge of the grid, to get the exact content of one or more
bit planes of the digital memory.

– by using the Analog Global Summer, which provides in
constant time an approximate measure of the number of
1s in any bit plane of the digital memory.

Although simple, this last feature is important as it pro-
vides efficiently global measures that are very useful to get
spatial statistics or to detect the convergence of relaxation
algorithms.

2.2.2 Cellular synchronous algorithms

From the architecture presented above, it turns out that the
retinal algorithmics at the present time is essentially a cel-
lular SIMD parallelism. A retinal program is a sequence of
binary Boolean instructions. All the pixels/processors per-
form the same instruction at the same time on their own data,
part of which can be taken from one of their closest neigh-
bors. The extreme level of granularity and the small amount
of digital memory are the main characteristics of the retinal
algorithmic. The algorithm designer is imposed a constant
effort of logic minimization, in order to find the Boolean ex-
pression of its algorithm that minimizes the number of ele-
mentary instructions (related to the computation time) while
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fitting in the available memory (just like a hardware designer
will make a circuit trying to minimize the critical paths and
using the minimal amount of logical gates).

Naturally, the memory limitations also affect the data
representation that can be used by the algorithm. In the case
of motion processing which concerns this paper, this means
that the memory used to represent the past history of ev-
ery pixel must be rigorously controlled. Typically, we shall
not keep histograms nor a large set of past values within ev-
ery pixel, but rather a limited number of temporal statistics,
computed recursively.

Despite these constraints, the retinal computation model
offers some very attractive features. In particular, the fusion
of acquisition and processing functions allows a close adap-
tation to the lighting conditions and to the scene dynamics.
More precisely, the Analog to Digital Conversion (ADC)
performed at the output of the photo-receptor is done by
a multiple reading which provides N binary images (level
sets). As the ADC itself is fully programmable, it is possi-
ble to perform a constant feedback from the local and global
computations to the acquisition, thus providing sophisticated
adaptation to lighting conditions.

Once the gray levels of the image are coded within every
pixel of the PAR, the retinal program applies a sequence of
arithmetic and logic operations that are completely written
in software, at the bit level. We now present such program in
the particular case of the motion detection.

The Σ∆ change detection algorithm relies on very sim-
ple primitives: comparison, difference and elementary incre-
ment and decrement. Furthermore, it is based on non-linear
computations which does not involve neither truncation nor
dynamics increasing. It is thus well adapted to the minimal
instruction set and the small memory of the PAR elementary
processors. The implementation on Pvlsar34 was performed
using the four primitives presented in table 3. To avoid con-
fusing notation, It is noted here Xt.

Table 3(3) represents the strict comparison primitive be-
tween Xt and Mt. e and f are the two bits of result, indicat-
ing whether Mt < Xt and whether Xt < Mt, respectively.
These indicators are used in the Σ∆ algorithm, to update the
statistics, by decrementing e (Table 3(4)) and incrementing f
(Table 3(5)). Table 3(1) shows the computation of the differ-
ence O coded on n bits {o0, . . . , on−1}, between the current
mean Mt and the current sample Xt. At the end of the com-
putation, Ot is coded in classical 2-complement, with c the
sign bit. For the second order statistics (Σ∆ variance Vt), it
is necessary to compute the absolute value of the difference
Ot (Table 3(2)).

The above primitives allow to implement the whole tem-
poral (pixel-wise) part of the algorithm. On Pvlsar34, it was
completed by using binary morphology as spatial regulariza-
tion. An alternate sequential filter was applied on the tempo-
ral output Et = Ξ2(Et) (see section 1.2.1). So the only algo-
rithmic primitives that are needed are the logical OR and the
logical ADD between one pixel and its immediate neighbor,
in each of the 4 directions. The filtered output Et represents

c = 1;
for i=0 to (n-1) {

a = mi ⊕ xi;
oi = a⊕ c;
a = a ∧ c;
c = mi ∧ xi;
c = c ∨ a;

}
(1) Signed difference
b = c ∧ o0;
for i=1 to (n-1) {

oi = oi ⊕ b;
a = c ∧ oi;
b = b ∨ a;

}
(2) Absolute value

d = 0; e = 0; f = 0;
for i=(n-1) down to 0 {

a = mi ∧ xi;
b = xi ∧mi;
g = a ∧ d;
e = e ∨ g;
g = b ∧ d;
f = f ∨ g;
a = a ∨ b;
d = d ∨ a;

}
(3) Strict comparison

c = m0 ∧ e;
m0 = m0 ⊕ e;
for i=1 to (n-1) {

mi = mi ⊕ c;
c = c ∧mi;

}
(4) Decrement

c = m0 ∧ f ;
m0 = m0 ⊕ f ;
for i=1 to (n-1) {

mi = mi ⊕ c;
c = c ∧mi;

}
(5) Increment

Table 3 The PAR algorithmic primitives used in the Σ∆ motion de-
tection.

the final detection label and it is used as a binary mask to
inhibit the update of the Σ∆ mean Mt.

= o

= o o oo o

memory access

memory accesses

non idempotent operator (ADD)

idempotent operator (ADD, OR)

Fig. 6 2D spatial filters optimization on retina

The implementation of other spatial operators have been
also optimized on the PAR taking care of its constraints (4-
connectivity). The 2D filters are split into 1D filters (figure
6). There are, at least, two passes: one pass for the vertical
operator and one pass for the horizontal operator. After each
pass, results are stored into memory. If the operator is not
idempotent (like ADD used for the density computation) (k×
1) and (1 × k) operators are not split into smaller operators
(figure 6, top). But if the operator is idempotent (like AND
and OR operators used for ASF), each (k × 1) and (1 × k)
operator is split into a set of (3 × 1) and (1 × 3) operators
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(figure 6, bottom), with, at each time, a memory access. This
decomposition reduces memory access to directly connected
neighbors.

Thus, for k > 3, non idempotent k × k operators are ex-
pensive to implement. There are two reasons: the first one
is, the great amount of cycles dedicated to gather far pixels
to the current PE and the second one is the cost of serial-bit
ALU operations. For these reasons the density filter is much
more slower than the erosion/dilatation filter (respectively
×4.5,×5.9 and×6.3 slower). As ASF are based on erosions
and dilatations, their implementation remains efficient even
if they have a great complexity, making them faster than den-
sity operator.

2.2.3 Hybrid algorithms

Although Pvlsar34 can simply and quickly compute relax-
ation operators such as skeletons, or morphological connected
operators, its efficiency in terms of useful computation is
low for such irregular operators because of the expense due
to the synchronous sequencing of the whole grid, that will
only serve in some specific regions of the image. For that
reason, a reduced set of asynchronous operators has recently
been proposed by (24) to increase the computing level of the
PARs. Thus, programmable connections, spanning tree con-
structions, OR and SUM asynchronous associations will be
integrated in the next generations of PARs.

Such hybrid synchronous/asynchronous architecture will
allow us to perform operations over a selected region (con-
nected component) very efficient. This is the case of the
geodesic reconstruction, which is useful for the motion de-
tection algorithm (see Section 1.2). In the asynchronous model,
the corresponding operation is computed like in the Asso-
ciative Mesh (see Section 2.3): the reference set X is used
as a binary mask to open/close the connections of the pro-
grammable mesh. Then an OR-association is computed
on the marker set Y ; the output is the result of the reconstruc-
tion RecX(Y ).

2.3 Associative Mesh

The Associative Mesh (19) intends to exploit a massive data-
parallelism, originating from a model based on network re-
configurability: the Associative Nets Model (33). To allow
efficient hardware optimizations for the large diversity of al-
gorithms in image processing (34), the architecture is built
from the observation of data-movements and data-structures
encountered in this field. The Associative Mesh relies on a
dynamic reconfigurability of its processors network and on
an asynchronous electronic used to perform global opera-
tions and communication tasks. Reconfigurability and asyn-
chronism offer solutions to adapt architectures to this con-
text (5). Several studies have shown that most techniques of
image processing can be implemented using the Associative
Mesh (16) (17) (8) (3) or architecture using some of the im-
plementation techniques of the Mesh and the Associatives
Nets concepts (22) (23).

2.3.1 Associative Nets Model Theory

The Associative Nets Model is characterized by the appli-
cation of associative operators on a locally reconfigurable,
directed interconnection graph called mgraph implemented
locally in each processor to enable its dynamic evolution in
the course of an algorithm. Mgraphs can represent objects
(figure 7) coded, processed or manipulated in image process-
ing such as connected areas, edges, oriented trees... It allows
us to think not only in terms of point-to-point communica-
tion between processors but to apprehend information at a
higher level.

(a) (b)

(d)(c)

Fig. 7 Different mgraphs configurations:
(a) Full graph (b) Region graph (c) Oriented trees (d) Edges graph

Operations in the Associative Nets Model combine com-
munication and computation aspects and are called ’associ-
ations’. They consist in a global application of an operator
- such as logical operators, addition, minimum/maximum or
spanning tree generation - on data spread over a connect set
of the considered mgraph. As a basic example, this primitive
can be used to asynchronously compute the area of a region
by globally summing 1 per pixel on the mgraph connected
components. It happens that most complex algorithms can
be realized by iterating these primitive operations. Local as-
sociations are also allowed and are named Step Associations;
the operator in this case is used to combine the local value of
a processor with its nearest neighbors on the mgraph. Figure
8 presents an example of a global MAX-Association.

2.3.2 Associative Mesh Architecture

The Associative Mesh is a SIMD hardware transposition of
the Associative Nets Model, featuring an 8-connected 2D
mesh. Its originality comes from an asynchronous imple-
mentation of associations: the interconnection graph can be
seen as an asynchronous path where data freely circulate



9

MAX
Association

8 1 1

4 8

4 6 4

4

4 4

8 1 1

2 7

6 2

3

1 4

3

6 4

3

30

48

4

8

4
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from a processor to another, propagating local results to neigh-
bors until global stability is reached. Reconfigurability di-
rectly stems from the concept of mgraphs: each processor in-
cludes an 8-bit mgraph register, where each bit emulates the
absence or presence of an incoming edge originating from a
neighboring processor. The mgraph register is connected to
the input of an AND-gate mask, which filters data emitted by
the neighbors.
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Fig. 9 Processor Architecture

A Mesh processor is built around two distinct parts: an
Associative Element (AE) which performs asynchronous as-
sociations and a Processing Element (PE) dedicated to inter-
nal operations and memory tasks, featuring an all-purpose
memory bench, dedicated registers to save the local mgraph
value, an independent scan-register for image input/output
and an ALU to perform basic local operations (figure 9).

In order to save space, AEs have a 1-bit data-path. A
n-bit association will then be performed as an iteration of
1-bit associations. Operators have been designed to ensure
that data cross a minimum of logical layers to optimize the
traversal time of each AE. As an example, in a simulation
based on a 90 nm technology and a Mesh running at 500
MHz, 40 AEs can be crossed in one clock cycle during an
OR-Association. As a result, the basic global primitives
of the model, associations, are performed in a very inter-
esting computation time: simulations using the same tech-
nological parameter indicate that for a 512 × 512 image,
OR-Association on 8-bit data is performed in 60 ns

Affectation
Equal

Boolean Instructions
OR, AND, XOR, NOT, Shift

Comparisons
=, 6=, >, ≥, <, ≤
Arithmetical Operations
+, −, ×, /, modulo

Table 4 List of SIMD instructions on the Associative Mesh

and PLUS-Associations in 200 ns (13). Such a speed
on global operations emphasizes the impact of the asyn-
chronous network on the Mesh’s performance. Available in-
structions are listed in Table 4.

2.3.3 Processor virtualization & SIMD

With current technologies, the architecture discussed above
is not optimized with a SoC approach, meaning a complete
image analysis machine inside one chip. We can improve
the Mesh integration by changing the PEs granularity: We
now assign a group of N pixels to each processing element
(now called SIMD PE) and consider that we have N virtual
PEs per physical SIMD PE (N is called degree of virtual-
ization) (12). To retain the benefits of asynchronism (very
fast computation time, easy controllability), the AE struc-
ture is preserved in its original configuration. Thus, only the
synchronous parts of the design are affected by the virtual-
ization process. Figure 10 presents a virtualized PE dealing
with two pixels.

This reorganization allows us to envision the architec-
ture as the juxtaposition of an asynchronous communica-
tion network and a set of virtualized synchronous units, each
managing N pixels. This new structure enables a significant
area gain: we have shown that the design area is reduced by
20% if N=16, 25% if N=1024. With N=1024, the hardware
cost of a 256 × 256 Associative Mesh, including 64 SIMD
PEs, each managing 32 × 32 pixels, is about 165 millions
of transistors. However, virtualization induces an increase of
computation time due to the serialization of local operations.
Still, this increase can be limited by implementing a SIMD
unit in each SIMD PE, so we can parallelize, up to a cer-
tain point, operations for pixels managed by the same SIMD
PE and reduce computation times in significant proportions
(13).

2.3.4 Σ∆ initialization

The Σ∆ initialization is entirely performed by the SIMD
PEs. Parallel conditional statements like WHERE or ELSE
WHERE implement the IF-THEN-ELSE instructions by per-
forming a sequence of operations in each PE, according to
the result of a local logic comparison.
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2.3.5 Markov

The update strategy used is image recursive for full-parallel
updates. The energies computation are held by the SIMD
PEs while the AEs are used to compute p, the sum of spa-
tial 8-connected sites, using a local PLUS-ASSOCIATION.
Conditional statements are used to collect sites label from
Et−1 and Et+1, compute Vp and Vf and also to set the final
label to the site, depending on the total energy u. Note that
the graph mask is configured by the set of the 8 masks (the
four principal directions: North, South, West, East and the
four secondary directions North-West, North-East, South-
West and South-East).

// Difference of Adequacy energy computation
∆Ua = (α× (2× o× α)/4× σ2;
// Energy due to potential Vp

WHERE(Et−1 == 1) Up = −βp;
ELSEWHERE Up = βp; ENDWHERE;
// Energy due to potential Vf

WHERE(Et+1 == 1) Uf = −βf ;
ELSEWHERE Uf = βf ; ENDWHERE;
// Energy due to potential Vs

// Graph configuration: fully 8-connected graph
Graph = mNW+mW+mSW+mS+mSE+mE+mNE+mN;
s=PLUS-ASSOCIATION(Graph),Et);
Us = (8− 2s)× βs;
// Model energy computation
Um1 = Us + Up + Uf ;
// Pixel labeling
WHERE(Um1 < ∆Ua)Êt = 1;
ELSEWHERE Êt = 0; ENDWHERE;

Associative Mesh ICM version

2.3.6 Binary geodesic reconstruction

Reconstruction takes an efficient use of the Mesh’s AE units:
the geodesic mask is represented as a graph, where each ob-
ject is a unique connected component. Pixels of the mask
(set to 1) are linked together with the LINK-WITH-ONES

mgraph creation primitive. The markers are then dilated up
to the mask’s limits by performing a global OR-ASSOCIA-
TION on the graph. The worst case is met when a unique
object - shaped as a spiral - with a marker on one of its ex-
tremities fills the 200×200 image. Simulations based on a 90
nm technology reveal that for this extremely rare configura-
tion, this operation on a Mesh running at 500 MHz will take
500 cycles. However, since data are 1-bit wide, it will only
take a handful of cycles in most cases for the association
to complete, thus providing a very interesting computation
time.

// Creation of a graph representing the geodesic mask
// from the ImageMask binary image
LINK-WITH-ONES(GraphMask,ImageMask);
// Markers dilatation
Result=OR-ASSOCIATION(GraphMask,ImageMarker);

Binary geodesic reconstruction on Associative Mesh

2.3.7 Morphological opening

A dilatation on binary data, with a 3 × 3 structuring object,
is simply achieved by a local OR-ASSOCIATION. Operat-
ing with a 5 × 5 or 7 × 7 structuring object only requires
an iteration of local associations. Erosion is computed in a
similar way, this time with an AND-ASSOCIATION. There-
fore, a morphological opening will be implemented on the
Mesh by computing 1, 2 or 3 local AND-ASSOCIATION,
followed by 1, 2 or 3 OR-ASSOCIATION, depending on
the size of the object.

(a)

2

3 4

1

(b)

1

3 4

2

5

Fig. 11 (a): Sub-window split for a 5× 5 density operation
(b): Sub-totals propagation to the central node

2.3.8 Density operator

On a 3× 3 window, each pixel’s 8 neighbors are summed in
parallel by a local PLUS-ASSOCIATION. The final thresh-
old is performed in the SIMD PEs. To operate on larger win-
dows, we must ensure that each pixel will be counted once
and once only. Addition is not idempotent, so it is impos-
sible to simply iterate local associations as we did with the
morphological opening. In consequence, we have to divide a
5×5 or 7×7 window into 3×3 or smaller sub-windows (fig-
ure 11). A sub-total is then computed in each sub-window,
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using a local PLUS-ASSOCIATION. Finally, each sub-total
is sequentially propagated to the central node to be added in
the final sum. A last threshold is then performed in the SIMD
PEs. As Boolean associations like OR-ASSOCIATION and
AND-ASSOCIATION are idempotent, they require less graph
configurations and associative operations. For the opening,
respectively 2 and 3 for 5 × 5 and 7 × 7 associative oper-
ators and only 1 graph configuration versus 5 and 17 asso-
ciative operators and as many as graphs configurations for
non idempotent operation like the addition for the density
operator.

// Graph config and sub-total for the upper left 3x3 window (1)
// (for example, the mW value activates the link between
// the processor and its west neighbor)
Graph=mNW+mW+mSW+mS+mSE+mE+mNE+mN;
Sum1=OR-LOCAL-ASSOCIATION(Graph,Image);
// Graph config and sub-total for the upper right 2x2 window (2)
Graph=mE+mNE+mN;
Sum2=OR-LOCAL-ASSOCIATION(Graph,Image);
// Graph config and sub-total for the bottom left 2x2 window (3)
Graph=mW+mSW+mS;
Sum3=OR-LOCAL-ASSOCIATION(Graph,Image);
// Graph config & sub-total for the last sub-window (4)
Graph=mW+mSW+mS+mSE+mE+mNE+mN;
Sum4=OR-LOCAL-ASSOCIATION(Graph,Image);

// Propagation to the central node
Graph=mNW; // for sub-window (1)
Final=OR-LOCAL-ASSOCIATION(Graph,Sum1);
Graph=mNE; // for sub-window (2)
Final=Final+OR-LOCAL-ASSOCIATION(Graph,Sum2);
Graph=mSW; // for sub-window (3)
Final=Final+OR-LOCAL-ASSOCIATION(Graph,Sum3);
Graph=mSE; // for sub-window (4)
Final=Final+OR-LOCAL-ASSOCIATION(mSE,Sum4);

// Final Threshold
WHERE(Final>12) Pixel=1;
ELSEWHERE Pixel=0;
ENDWHERE;

5× 5 density operation on Associative Mesh

2.4 Architectures specification summary

In order to compare the three architectures and to focus on
their advantage and drawback, their specifications are summed
up into two tables: the architectural specifications (RAM,
amount of transistors and power consumption) and band-
width specifications (access to internal data and external data).

The table 5 provides the size of the internal RAM (size
of the cache hierarchy on PowerPC G4 and size of the dis-
tributed memory on the Mesh and the retina) and an estima-
tion of the power consumption. For the PowerPC G4, this is
an average value, for the Mesh this is an estimation and for
the retina, this is the measured value.

One very important point for comparison is the band-
width of these architectures. As the Mesh and Retina are
parallel architecture, we use the concept of aggregate band-
width originating from High Performance Computing. The
aggregate bandwidth is the sum of the bandwidth of all pro-
cessors (table 6). Then we consider the internal bandwidth

archi freq internal RAM transistors Watt
AM 500 MHz 2 MB 160 M 2 W

Retina 5 MHz 225 KB 4 M 100 mW
G4 1 GHz 32KB + 512 KB 58 M 10 W

Table 5 architectures specifications

architecture external bus internal bus
AM 64 B/c 1024 B/c
AM 30 GB/s 476 GB/s

Retina 555 B/c 833 B/c
Retina 2.8 GB/s 4.1 GB/s

G4 1 B/c 16 B/c
G4 1 GB/s 16 GB/s

Table 6 Bandwidths: per cycle and per second

as the bandwidth between the processor and its closest RAM
(L1 cache for the PowerPC G4 and distributed internal RAM
for Mesh and Retina) and the external bandwidth as the band-
width of the external bus, connecting the processor, to the
external RAM or to another processor. For the Mesh, this is
the capability of the asynchronous network to transfer data
from one AE to another AE. For the Retina this is the band-
width to transfer data from one memory bank associated to
one processor to one of its connected processors. The reason
is that, for the retina, the bandwidth cannot be computed in
the same way than for RISC processor or an associative net-
work, where internal and external buses can be easily iden-
tified. Each elementary processor (PE) of the retina has 48
bits of memory and 4 bits are shared with the four neighbors.
Internal bus bandwidth capacity is based on the number of
cycles for a READ, that is 6 cycles. External bus capacity is
the number of cycle to perform a copy from one of the four
bits (6 cycles for the READ) to one of the 44 private bits (3
cycles for the WRITE). Internal bus bandwidth is to access
private memory, external bus to access shared memory. Note
that for the Mesh, the bandwidths are computed for an archi-
tecture of 256×256 AEs with a virtualization N of 1024, that
is 64 SIMD PEs.

We can notice and it is one of the main advantage of spe-
cialized architectures, that both Retina and Mesh can trans-
fer much more data per cycle than a generalist RISC proces-
sor (×64 for internal and external buses). When consider-
ing bandwidth per second, the total aggregate bandwidth of
the Mesh is close to the latest Cray vector processor perfor-
mance (10) which has a peak bandwidth of 800 GB/s. Keep-
ing in mind that most of the image processing algorithms are
faced with memory wall problem, it is like if RISC still wait
for data when the distributed buses of specialized machine
can transfer data in time to feed processors.

3 Benchmarks

In order to compare the architectures, both from a qualitative
and quantitative point of view, we used the frame rate and the
cpp (Cycle Per Point):
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cpp =
t× F

n2

Where t is the execution time, F the processor frequency
and n2 the number of pixel to process, per processor. The
cpp is an architectural metric to estimate the adequacy of an
algorithm to an architecture (27). For each architecture, we
provide the cpp and the speedup for every operator (Σ∆,
ICM, morphological operator) and also for the whole algo-
rithm as described in the first section. The algorithms have
been implemented on a PowerPC G4 and PAR and have been
simulated on the Associative Mesh with SystemC. For paral-
lel architectures, the cpp expression is modified, depending
on the number of pixels to be processed by a processor:

cppPAR = t× F, cppMesh =
t× F

n2/N

The cpp values have been calculated for 128×128, 256×
256, 512 × 512 and 1024 × 1024 image size to analyze the
cache behavior. We only provide the results for 256×256 im-
age size to reduce the amount of results. For specialized par-
allel architecture like PAR or Mesh, the scalability is quite
ideal so extensive results will not provide more information.
For the PowerPC, more detailed results are provided to focus
on the problem of cache misses.

3.1 Benchmark procedure
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Fig. 12 Asynchronous data path on Associative Mesh simulator

For the PowerPC, we used the following approach. As
there is no clock cycle 64-bit counter, on powerPC under
MacOS, we have used a micro-second counter based on the
micro kernel MACH. As execution time is very short for
small images, the measure is done on i iterations of the loop,
to get a duration of×1000 the resolution of the timer. As this
measure can be polluted by the OS, r runs are performed,
and the minimum is selected.
For the PAR, a logic analyzer Agilent 1670 has been used.
Acquisition, conversion and computation time are readable
on the analyzer. The figures only take into account the com-
putation time.
For the Mesh, algorithms have been implemented and sim-
ulated using a Mesh simulator based on a SystemC descrip-
tion of the architecture allowing a cycle-accurate evaluation.

In order to achieve this feature, we need to evaluate the du-
ration of an association. Besides technological or architec-
tural issues, this duration depends on the initial value of the
data and of the graph type used for the operation. For in-
stance, an OR-based-association computation time is given
by the longest distance between two logical 1s, Therefore,
estimation can be performed by computing the number of
processors walked through by data during the operation. To
implement this process on the Mesh simulator, data circulat-
ing in the asynchronous network provide two informations,
each going through a specific data path: on one hand, the lo-
cal result of the association as a 1-bit value uses the standard
architecture data path and, on the other hand, a counter rep-
resenting the number of processors walked through so far by
this data, which is incremented after going through a proces-
sor (figure 12). When the association terminates, data in the
network with the highest counter value gives the duration of
the association.

3.2 PowerPC G4 results

Four algorithms have been benchmarked: ICM, Σ∆, density
filters for 3× 3 and 7× 7 kernels and also Frame Difference
(FD) algorithm. We added FD to get a reference in term of
complexity and then in term of cpp, since no algorithm can
be simpler than an absolute difference followed by a thresh-
old to detect motion.

For each algorithm, two scalar versions and two “vector”
versions were coded:

– s0: scalar with no optimization, straight-forward coding,
– s1: scalar with all possible optimizations,
– v0: SWAR vector version with no optimization,
– v1: SWAR with optimization like Loop unrolling, Regis-

ter Rotation, strength reduction and computation factor-
ization.

We provide cpp for classical image size, to point out the
problem of cache behavior. For each algorithm, four ratios
are also calculated:

– s0/s1: the impact of scalar optimization,
– v0/v1: the impact of SWAR optimization,
– s1/v1: the impact of SWAR switch for both optimized

versions,
– s0/v1: the total acceleration from a basic/naive code to

an optimized SWAR code.

We can see that the global speedup (s0/v1) is huge: from
×17 for Σ∆ to ×60 for 7 × 7 density filter. We can notice
too that the code vectorization is the optimization technique
that provides the highest speedup(line s1/v1: from ×6.8 for
ICM to ×15.6 for density filter, while the scalar techniques
all together provide a speedup (s0/s1) from ×1.2 for Σ∆ to
×6.6 for ICM. Such value of speedups make the use of opti-
mization and vectorization to assert themselves for real-time
computing on generalist purpose SWAR RISC processor.
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algo FD Σ∆ ICM Density3 Density7
cpp of scalar and vector versions

s0 28.7 50.5 112.2 27.2 114.0
s1 17.5 40.5 16.9 12.3 30.1
v0 3.4 4.5 3.4 1.9 5.7
v1 1.2 3.0 2.5 1.5 2.5

gain between scalar and vector versions
s0/s1 ×1.6 ×1.2 ×6.6 ×2.2 ×3.9
v0/v1 ×2.9 ×1.5 ×1.4 ×1.2 ×2.7
s1/v1 ×15.0 ×13.7 ×6.8 ×8.2 ×15.6
s0/v1 ×24.6 ×17.1 ×44.9 ×18.3 ×60.0

Table 7 implementation on PowerPC G4: cpp and gain

Note that all the versions s1, v0, v1 require some exper-
tise from the developer. If these versions have been compiled
with all optimization options of the compiler, without a lit-
tle help, the compiler can not achieve a level of performance
higher than the s0 version.

If we look in detail at the figure 13 that represents the
cpp’s evolution of ICM and Σ∆, for image sizes varying
from 128× 128 to 1024× 1024, we can focus on two points.
First there is a big gap in performance when image size in-
creases and data do not fit in the cache. This phenomenon
appears for different image size, depending on the algorithm
(about 250 × 250 for Σ∆ and 350 × 350 for ICM). Then if
both cpp are similar in the left part of the figure for small im-
age sizes, the Σ∆ cpp becomes 40% bigger than ICM cpp.
The cpp value is multiplied by ×3.8 between left and right
part of the figure. This result is in contradiction with any
complexity analysis: Σ∆ is more simple than ICM, but be-
cause it requires more images to be present at the same time
in the cache and also because there is very few instruction
to optimize, there is no possibility to optimize the code. The
Σ∆ algorithm is a typical case of memory bounded prob-
lem. The performance decrease is more important than for
ICM or other algorithms studied here. That raises another
problem: SIMDization is efficient only when data fit in the
cache: if the global speedup (s0/v1) is ×17.1 for 256× 256
images size, it is only ×5.2 for 1024× 1024 images size.

Finally, if we compare the cpp of the best version (v1) of
ICM or Σ∆ algorithm with the naive scalar version (s0) of
FD or even the optimized scalar version (s1), we can see that
the SIMDization makes complex algorithms like Markov Ran-
dom Field relaxation, or Σ∆ filtering run faster than FD.
From a qualitative point of view, this enforces the use of
SWAR on general purpose RISC computer since such SIMD
multimedia instructions make robust algorithm run faster than
naive algorithm if this one is not optimized.

In the next subsection we will focus on the implemen-
tation of these algorithms on the Retina and on the Mesh to
finally compare them from an embedded point of view: frame
rate and power consumption.

Table 8 shows, for PowerPC G4, that scalar optimiza-
tions are as important as SWAR optimizations:×7 ! As usual,
the most efficient optimization is the highest level optimiza-
tion: the algorithmic transform by LUT utilization provides
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Fig. 13 ICM and Σ∆ cpp on PowerPC G4

version cpp gain
basic 147 -
LUT 41 ×3.6

internal Loop Unrolling 32 ×1.3
external Loop Unrolling 20 ×1.6

SIMD vectorization 2.6 ×7.7

Table 8 PowerPC G4 optimizations impact for ICM

Function #i #c t(ms)
acquisition 0 0 15

digital conversion 64 2.5k 2
Σ∆ estimation 160 6.5k 1.3

spatial binary morphology:
3× 3 ASF 25 1k 0.2
5× 5 ASF 58 2.3k 0.5
7× 7 ASF 108 4.3k 0.9

3× 3 density operator 36 2.2k 0.4
5× 5 density operator 95 6k 1.2
7× 7 density operator 152 9.6k 2.0

Table 9 Computation costs of the different algorithmic functions of
Σ∆ detection on Pvlsar34.

a speedup of×3.6. Caches have also an important impact on
performance whether the data fit in the cache (256× 256) or
not (512× 512 and more).

3.3 Retina benchmarks

The results presented in this section, related to computation
time and energy, have been measured on our experimental
device composed of the 200× 200 PAR Pvlsar34 connected
to an Excalibur board EPXA1, used to control the PAR and
to perform higher level computations. The measures have
been made using an oscilloscope and a logic analyzer ex-
cept for density operator where figures are estimated, not
measured.

Table 9 details the cost in time of the different functions.
The first column represents the number of Boolean instruc-
tions, the second column the number of clock cycles and the
third column the time, in ms. The acquisition corresponds to
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Algorithm cpp t(µs) frame rate

Frame Difference 0.5 1.024 977× 103

Σ∆ 35 70 14.3× 103

ICM 70 140 7.14× 103

Geodesic reconstruction 0.46 0.94 1.07× 106

3× 3 Morphological opening 0.19 0.39 2.58× 106

7× 7 Morphological opening 0.44 0.91 1.11× 106

3× 3 Density operator 0.32 0.65 1.55× 106

7× 7 Density operator 10.21 20.9 47.8× 103

Table 10 cpp and frame processing rate of Associative Mesh (for
200× 200 images)

the time of photo-transduction, during which no operation is
performed. This time, measured here in normal conditions
of our laboratory, naturally varies according to the lighting
conditions. For the following functions (digital conversion,
Σ∆ estimation and spatial binary morphology) the compu-
tation time only depends on frequency of the retina. For the
spatial processing (binary morphology), three different sizes
are considered for the largest radius of the structuring ele-
ment set used both by the alternated sequential filter and the
density operator.

If we only consider the computation time, the overall
time consumed by the PAR is approximately 3.5 ms per
frame, among which 2 ms for the CNA and 1.5 ms for the
algorithm itself. These times are measured for a control fre-
quency of 5 MHz. This means that, if we discard the acqui-
sition time (which can make sense for a PAR observing a
strongly lighted scene, for which the 2 ms of the CNA are
sufficient as acquisition time), then a frame rate of 285 im-
ages per second is attainable at 5 MHz. Conversely, if the
frame rate of 25 images per second is sufficient, then the
control frequency can be lowered to 440 kHz, thus reducing
proportionally the computing power.

At 5 MHz, the computing power of the whole device
(PAR + EPXA1 board) has been measured at less than 1 W,
from which only 100 mW is consumed by the PAR circuit
and its cortex controller (external micro controller, figure 5)
and the rest by the EPXA1 board. This means that the com-
puting power of the PAR based vision system can certainly
be lowered significantly by developing specific controlling
ASIC instead of using off-the-shelf development kit.

3.4 Associative Mesh results

The results provided in the following section were simulated
using a 90 nm technology parameter. On the Associative
Mesh, the ICM cpp is about 70 for one ICM relaxation (vary-
ing from 70 to 80, depending on the degrees of SIMD and
virtualization) and 35 for Σ∆.

For the morphological operator, the Associative Mesh
cpp is higher than PowerPC G4 cpp because of 1-bit imple-
mentation of PLUS-ASSOCIATION. But with SIMD dis-
tributed processing power, it has the higher frame processing
rate, even with virtualization.

image size PowerPC G4 Retina Mesh
Configuration #1: Σ∆ + 4 ICM

frame rate 1178 - 24800
real-time Freq (MHz) 21 - 0.504

energy (µJ) 8500 - 201.6
Configuration #2: Σ∆ + morpho

frame rate 3436 667 184000
real-time Freq (kHz) 7300 188 68

energy (µJ) 2900 150 27.1

Table 11 benchmarks results for configurations #1 & #2

The Mesh achieves spectacular performance. The band-
width offered by its internal busses allow the Mesh to achieve
a frame processing rate of 24800 images/s. This number
could however be impacted by the performances and/or syn-
chronisation with the video sensor. Another physical limita-
tion is the number of incident photon impact(s) on the asso-
ciated sensor.

3.5 Synthesis benchmarks

We only take into account the computation time and dis-
card the acquisition time, the conversion time, the transfer
time, and the power consumption of these operations. We
are aware that results are a bit unfavourable to the PAR as
the acquisition and conversion is integrated into itself con-
trary to the Mesh and the PowerPC. Right now, there is no
way to get better results so the synthesis benchmarks will
focus on the computation time to evaluate architecture per-
formance. Considering the power consumption of a sensor
– which is about 500 mW for both acquisition and conver-
sion – the simulation and execution times will change but
one order of magnitude between the PAR, the Mesh and the
PowerPC performances will still exist.

Two configurations of benchmarks have been done (Ta-
ble 11):

#1 Σ∆ + Markovian relaxation (4 iterations of ICM),
#2 Σ∆ + morphological post-processing (geodesic recon-

struction, 3 × 3 density or 3 × 3 ASF, depending on the
architecture).

In the configuration #1, Σ∆ is considered as a pre-processing
algorithm used to provide a better initialization for ICM than
classical Frame Difference algorithm. In configuration #2,
Σ∆ is a “stand alone” algorithm with a post processing step
to remove the remaining noise. The choice of spatial regu-
larization algorithm has been done to be coherent with the
architecture capabilities, that is:

– geodesic reconstruction on the Associative Mesh, since
it is the strongest algorithm, by far and its implementa-
tion is efficient on Associative Mesh (compared to the
implementation of the other architectures)

– 3 × 3 ASF on the PAR, since ASF is the most efficient
operator on the retina.
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image size 128 256 512 1024
Configuration #1: Σ∆ + 4 ICM
G4 / AM ×36 ×42 ×139 ×155

Configuration #2: Σ∆ + morpho
G4 / PAR ×14.4 ×18.0 ×61.3 ×72.1
G4 / AM ×89 ×107 ×329 ×395

PAR / AM ×5.5 ×5.5 ×5.5 ×5.5

Table 12 Energy comparison for configurations #1 & #2

– 3 × 3 density on SWAR CPU, to get a complexity that
is comparable to PAR complexity, keeping in mind that
after optimizations, SWAR 5× 5 and 7× 7 operators are
quite as fast as the 3× 3 operator.

To assess the performance of the retina, we only take into
account the processing time (1.3 + 0.2 = 1.5 ms) not the to-
tal time (acquisition + conversion + processing). The reason
is that both acquisition and conversion times are unknown
for the PowerPC G4 and the Associative Mesh. This leads
to a frame rate of 667 images/s. The estimation of energy
consumption is based on this assumption.

Table 12 presents the energy consumption of the three ar-
chitectures for the configurations #1 and #2. We can notice
that specialized architectures are by far more efficient than
the general purpose processor - even with SWAR computa-
tion: performance ratios are all greater than ×10. This also
means that even a 50% error, about the estimation of Pow-
erPC G4 power consumption, is definitively not a problem.

3.6 Benchmark analysis

Before concluding, we focus, for each architecture, on the
impact of the optimizations and the efficiency of the imple-
mentation.

– RISC PowerPC G4
– From a point of view of embedded system, Altivec

is well-adapted to complex algorithm like ICM re-
laxation: the ratio with Associative Mesh is ×35.7
for configuration #1 and ×88.6 for configuration #2.
That could lead people to redesign SIMD Mesh PE
architecture with an Altivec-like SWAR Instruction
Set Architecture. For example a sub-set with only in-
teger and also with restriction within the cross-bar
capabilities could be integrated on a FPGA.

– For RISC, SWAR is very efficient, since a complex
and robust algorithm like those proposed in the con-
figuration 1 and 2, are running faster, after SIMDiza-
tion, than naive Frame Difference.

– Another point for fair comparison, is the cache size
of a RISC. We can see that the G4 is efficient (cpp
low) for size up to 300 × 300. This means that for
smaller size, the G4 efficiency is underestimated, from
an embedded point of view, since it will work fine
with smaller cache. Not only we can apply a down-
clocking frequency for its embedded version, but we

can also reduce its cache (both will decrease power
consumption).

– Down-clocking for System on Chip: Altivec frequency
could be as low as 10 MHz for both configurations
and for 128× 128 and 256× 256 images.

– Retina
– The cost of the serial-bit ALU is a problem for arith-

metic operators. A 8-bit ALU would have a great im-
pact on performance, but will also have a negative
impact of size and power consumption of the retina.
A material full adder may be a golden mean to have
good arithmetic performance.

– Asynchronous logic and graph manipulation is a must
have for specialized architecture, not only for low
level operations, but also and especially for middle
level operations with irregular processing like the mor-
phological reconstruction. Next generation of artifi-
cial retina should integrate such kind of silicon graph
management.

– Associative Mesh
– Computation results show that the Associative Mesh

is well suited for both configurations. Each sequence
of algorithms takes advantage of one of the Mesh’s
architectural characteristics. For configuration 1, the
massively parallel resources easily handle the amount
of computation required by the ICM relaxation. For
configuration 2, the dynamic reconfiguration of the
graph’s structure allows to efficiently represent the
objects, while the asynchronous implementation of
global operations guarantees a fast processing of the
geodesic reconstruction. In both cases, frame rates
are quite spectacular.

– A remarkable aspect of the algorithms implementa-
tion on the Associative Mesh, in contrast with Pow-
erPC G4 (and to a lesser extent, with retina) is that
computation time is quasi-independent of the images’
size or the detected object’s shape.

– The major drawback is the hardware cost of the Mesh
to process big images when compared to the other
architectures. Still, vision SoC implementation of a
256 × 256 Associative Mesh is compliant with cur-
rent technology and only requires 3 times more tran-
sistors than a PowerPC G4 for a ×20 faster compu-
tation.

– With such performance, reducing the clock frequency
by a factor 10 could still allow to process more than
two thousand 256 × 256 images per second with a
power consumption under 1 Watt. The Associative
Mesh could then be used in association with a HD
camera on a SoC platform.

4 Conclusion: future architectures

We have presented the implementation of robust sets of op-
erator for Motion Detection, based on Markov Random field,
Sigma-Delta filtering and morphological operators like open-
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ing, density and Alternate Sequential Filter. These algorithms
have been used to emphasize the intrinsic qualities and draw-
backs of these architectures (section 4.1) and then to envi-
sion the specification of future architectures, first with SWAR
paradigm (section 4.2), second with FPGA based customiza-
tion (section 4.3) and finaly with many-core reconfigurable
processor (section 4.4).

4.1 Pros and cons of the three architectures

– SWAR is efficient for low level algorithm. Currently used
in RISC processor and also present and customized in
some SoCs.

– Asynchronous Associative Networks. This model of com-
putation is extremely efficient for both power consump-
tion and intermediate levels algorithms. It is efficient for
power consumption because asynchronism mechanism.
It is also interesting for speed since, in our case, up to
40 asynchronous associative operators can be executed
during 1 synchronous cycle. It is also efficient for in-
termediate level of processing because associative net-
works can be reconfigured and then, an operator can be
applied through a graph, to any connected components.
Any kind of irregular and CPU intensive algorithms can
be handled efficiently, like geodesic reconstruction, wa-
tershed segmentation and of course, connected compo-
nent labeling.

– Retinas are very low power embedded architecture. For
tight integration and an optimized connection between
sensor and calculator, retinas outperform SoC and Vi-
sion SoC systems like FPGA+sensor. But, right now they
are limited to regular processing. Integrating an associa-
tive network inside a retina will allow to use such a kind
of machine for intermediate level algorithm. So a quite
complete image processing chain could fit into a high
parallel and versatile system.

4.2 SWAR enhancement

Nowadays, the two main solutions to computer archi-
tecture limitations are: increasing RISC performance or
customizing FPGA.
When RISCs have replaced CISCs using architectural
optimizations like pipeline, registers and cache, the RISC
motto was more instructions per cycle, because they were
using less complex instructions that can be fetched, de-
coded and executed faster than CISCs can. As at this
time, it was commonly accepted that clock frequency can
go higher and higher. The easiest way, thanks to the tech-
nology, was to increase the clock frequency. At the same
time two evolutions of RISC were released: the super-
scalar architecture (multi ALU/FPU per chip) and the
VLIW (Very Long Instruction Word) like the Intel Ita-
nium or the Texas Instrument C6x DSP family. But since
a few years, clocks frequency does not increase as much

as before. The new RISC motto could be “more instruc-
tion per second”. The General Purpose solution is the
multicore approach (see section 4.4) And the Domain
Specific solution is SWAR extension. As we can see in
table 7, the speedup provided by Altivec – up to ×60 –
released in 1998 is by far, greater than the current num-
ber of cores inside a processor in 2008. As SWAR im-
plementation requires few transistors because of the very
simple control structure due to SIMD model, one very
efficient way to increase performance could be “more
SWAR into RISC”
– longer registers: 256 bits or even 512 bits, to process

more data per cycle,
– more smart instructions: Altivec has a very useful

vector permutation unit that provides powerful in-
structions like vec sel that is an aesthetic way to
perform a SIMD if then else condition (replacing masks
computations and combinations) or vec perm that
can permute data with any kind of pattern (SSE can
only do regular patterns of interlacing). vec perm
is used for computing unaligned vectors, matrix mul-
tiplications and even for sorting data. Such a kind of
unit should be present in any SWAR architecture,

– more specialized or dedicated instructions like Al-
tivec vec sum, vec msum that performs reduction
into a register and the SSE2 mm sad epu8(a,b)
that performs a sum of absolute difference (SAD) be-
tween two registers. This instruction is used in ev-
ery correlation algorithm based on block-matching.
Adding such an instruction has been studied into (29).

4.3 FPGA based customization

Processor customization, as defined for reconfigurable
architectures (39) and embedded systems, have to be ex-
plored. A customizable processor is a General Purpose
Processor (GPP) embedded into a FPGA which cores
can be enhanced. Most major FPGA manufacturers now
provide solutions with softcore customizable FPGA (NIOS
2 for Altera, microblaze for Xilinx). Such technologies
have room for improvements like adding new instruc-
tions, new customized format (37) for specific domain
application (38) but also new dedicated blocks. With a
compiler like C2H for Altera FPGA or DIME-C for Xil-
inx, a complete C function can be compiled into a VHDL
block and be directly called inside a C code. GPP and its
accelerators can then be seen as a full system on a chip.
With these two levels of customization (instruction and
hardware function) one can envision to add a new spe-
cialized instruction at the C level or new hardware func-
tion. A new instruction could be b=sigmaDelta(a,b)
that compares a and b and increment/decrement b ac-
cording to the result of the comparison. Such a function
will remove if then else structure that stalls/flushes the
pipeline. On the other hand an hardware function could
implement a morphological operator. Such hardware im-
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plementation can be much more faster than the sequen-
tial execution of the instructions that compose it, as no
more “register to register” stage is required at each cy-
cle like it is the case for pipeline execution. One of the
best example of processor customization (not softcore
but ASIP) is the Tensilica Xtensa architecture (37).

4.4 Many-core reconfigurable processor

If classic systems are able to race against Moore’s Law
(bigger caches, more complex branch predictors, more
hardware optimizations), they are slowly but steadily los-
ing the efficiency race. The amount of transistors involved
in those systems keep increasing, but most of them are
only used to stay on par with Moore’s Prediction. They
could be used more efficiently if GPP were no so “Gen-
eral Purpose” but also target some specific domains like
computer vision or multimedia. The solution to this prob-
lem is brought by recent technology advances by com-
bining both above solutions: designing reconfigurable par-
allel processor.
This leads to the fact that different models of computa-
tion have to be implemented in order to fit a given do-
main constraints. For example, the PAR can execute var-
ious regular algorithms in a very fast and efficient way
even if the PAR itself is only composed of simple pro-
cessors with few bits of memory. Similary, the Mesh,
thanks to its asynchronous network can handle irregular
algorithms. Another example of such a processor is the
PIMM (25). PIMM is dedicated to morphological op-
erations and use, an explicit hardware queue model to
execute algorithms – like geodesic reconstruction or wa-
tershed segmentation – faster than a GPP, which are the
most used architecture for such tasks but are, in fact, less
efficient.
Currently, multi-cores approach is the leading solution
for Thread Level Parallelism. But these processors are
designed for regular processing, irregular processing still
being out of their range. This also applies to CELL pro-
cessor and GPU: Cell is just a 9-core heterogeneous RISC
processor and GPU – from Nvidia or ATI – are still ded-
icated to regular processing even if they are going to be
more flexible when used with a Stream Computing lan-
guage – CUDA (11) and Brook GPU (6).
Next generation will include specialized/dedicated logic
to tackle the problem of GPP inefficiency. Adding a cus-
tom part of logic (100 to 200 millions of transistors) is
definitively no more a problem, compared to the total
size of a CPU (800 millions of transistors for current In-
tel quad core). One of the most promising architecture of
this kind is the Intel Polaris/Larrabee architecture from
Terascale project (41). Polaris has a hierarchical bus to
connect PEs together, PEs include an 512-bit SWAR unit
and can be reconfigured, for 3D graphic processing or
cryptography.

We believe that adding a custom part of logic into GPP
(100 to 200 millions of transistors is now just a part of)
dedicated to irregular processing would be a solution to
the problem of GPP inefficiency.
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